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Characterizing the dynamics of stochastic bistable systems by measures of complexity

Annette Witt,* Alexander Neiman,† and Ju¨rgen Kurths‡

Arbeitsgruppe Nichtlineare Dynamik an der Universita¨t Potsdam, Postfach 601553, D-14415 Potsdam, Germany
~Received 19 June 1996; revised manuscript received 2 January 1997!

The dynamics of noisy bistable systems is analyzed by means of Lyapunov exponents and measures of
complexity. We consider both the classical Kramers problem with additive white noise and the case when the
barrier fluctuates due to additional external colored noise. In the case of additive noise we calculate the
Lyapunov exponents and all measures of complexity analytically as functions of the noise intensity or the mean
escape time, respectively. For the problem of a fluctuating barrier the usual description of the dynamics with
the mean escape time is not sufficient. The application of the concept of measures of complexity allows us to
describe the structures of motion in more detail. Most complexity measures indicate the value of the correlation
time at which the phenomenon of resonant activation occurs with an extremum.@S1063-651X~97!06504-5#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

Phenomena of noisy bistability are archetypical for wi
areas of physics, chemistry, and biology. With the class
work of Kramer’s@1# theoretical and experimental investig
tions these phenomena became a field of intensive inves
tions in nonlinear science~see, e.g.,@2#!. Recently, two non-
linear cooperative phenomena have been discovered f
general class of noisy bistable systems: the phenomeno
stochastic resonance and the phenomenon of resonant a
tion. Stochastic resonance~SR! occurs in bistable system
that are simultaneously driven by noise and a periodic sig
Tuning the noise intensity, an enhancement of the respo
of the system to the periodic force becomes possible@3#.
This effect appears when the mean escape rate from a
coincides with the frequency of the periodic signal. Recen
SR has been studied in terms of information theory@4,5#.
The phenomenon ofresonant activationtakes place in
bistable system with fluctuating barriers. In this case
bistable system is driven by additive noise, which models
thermal fluctuations, and by multiplicative colored nois
which leads to fluctuations of the barrier height. Tuning t
correlation time of the multiplicative noise, a minimizatio
of the mean escape time from a well can be obtained: fo
optimal value of the noise correlation time the mean esc
time takes its minimum@6#. Both phenomena underline th
nontrivial behavior of nonlinear dynamical systems under
influence of noise.

The study of nonlinear stochastic systems in terms of
Fokker-Planck formalism simply allows us to analyze t
stationary distributions and the mean first-passage times
low-dimensional systems. However, the detailed dynam
description of motion is difficult to obtain both analytical
and numerically. In this paper we therefore apply two oth
approaches from nonlinear dynamics to study noisy bista
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dynamics: distributions of local Lyapunov exponents a
methods of symbolic dynamics. The use of these method
obvious for such systems because we can naturally introd
a two-symbol alphabet corresponding to the two most pr
able regions in the phase space of the system.

Such symbol sequences can be characterized by a b
class of so-called measures of complexity. Traditional m
sures of complexity, such as Shannon entropy or algorith
complexity, are measures of randomness or disorder.
cently, many alternative measures of complexity have b
proposed. They yield maximal complexity if the syste
passes a critical value, e.g., it switches between regular
chaotic behavior. We discuss in the case of the class
Kramers problem the relation between these measure
complexity and the traditional measures for describ
bistable systems. For the more complex system with the fl
tuating barrier we show that the traditional parameters, s
as mean escape time or global Lyapunov exponents, are
sufficient for a complete characterization of the dynam
and we will explain that measures of complexity give som
additional information about the motion of the Brownia
particle. This becomes especially important for the analy
of time series obtain from experimental sets when class
quantities become difficult to calculable.

This paper is organized as follows. In Sec. II we descr
the models and discuss the behavior of classical quanti
such as stationary probability density or mean first-pass
time. The Lyapunov exponents are studied in Sec. III. S
tion IV is devoted to measures of complexity. Finally, th
results are discussed in Sec. V.

II. MODELS

We treat the very popular model of an overdamped Kra
ers oscillator

ẋ52
dU~x!

dx
1A2Dj~ t !, ~1!

with the symmetric potential

ni-
d-
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55 5051CHARACTERIZING THE DYNAMICS OF STOCHASTIC . . .
U~x!52 1
2x

21 1
4x

4, ~2!

wherej(t) is the zero-mean Gaussian white noise

^j~ t !j~ t8!&5d~ t2t8!. ~3!

The stochastic differential equation~SDE! ~1! describes the
noisy dynamics of an over-damped Brownian particle in
double-well potentialU. The stationary probability density i
yielded as the solution of the appropriate Fokker-Plan
equation

] tp~x,t !5D]xxp~x,t !1]x@U8~x!p~x,t !#, ~4!

which has the steady-state solution

ps~x!5NexpS 2
U~x!

D D , ~5!

where N is the normalization constan
N215*2`

1`exp@2U(x)/D#dx. The stationary distribution ha
two maxima corresponding to the stable states of the ap
priate dynamical system and a minimum at the origin ref
ring to the saddle pointx50.

The quantity of crucial interest in noisy bistable dynam
is the mean first-passage time~MFPT! of the top of the po-
tential. This quantity can be obtained from the Pontrya
equation@7#

D
d2T~x!

dx2
2U8~x!

dT~x!

dx
521. ~6!

As boundary conditions for theT(x) we have chosen an
absorbing boundary condition at the top of the barr
(x50) and a reflecting boundary condition atx→2`:

T~x50!50,
dT

dx
~x→2`!50. ~7!

The mean escape time from the left potential well is then
solution of Eq.~6! with the specified initial conditions~7! @8#

T0~D !5
1

DE21

0

dyexp@U~y!/D#E
2`

y

exp@2U~z!/D#dz.

~8!

This quantity diverges when the noise intensity tends to z
For small noise intensitiesD,DU, whereDU is the barrier
height,T0(D) follows the well-known Arrhenius law

T0~D !}exp~DU/D !, ~9!

whereas for strong noise (D.DU) the Arrhenius law is no
longer valid. This transition does not disturb the stationa
of the probability density and becomes visible if we calcul
the second derivative of the quantityT0(D). It vanishes at
D'0.6 @9#.

The second objective studied here are bistable syst
simultaneously driven by Gaussian white noise and multi
cative colored noise. This class of models refers to a topi
high recent interest in the analysis of stochastic nonlin
systems, namely, to the problem of surmounting fluctuat
barriers@6#. It describes a variety of physical situations, e.
e
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biological transport@10# or the dynamics of a dye laser@11#.
The nontrivial phenomenon that occurs in such system
the so-called resonant activation: there is an optimal valu
correlation time of multiplicative noise at which the mea
escape time from a well takes its minimal value. The mo
we study here is the same as the previous one, but with
additional colored noise source that modulates the bar
height:

ẋ52
dU~x!

dx
1A2Dj~ t !1xy~ t !; ~10!

y(t) is exponentially correlated Gaussian noise that is m
eled by an Ornstein-Uhlenbeck process. Thus the tw
dimensional Markov process is described by the set of SD

ẋ5x2x31A2Dj~ t !1xy, ~11!

ẏ52
y

t
1

A2Q
t

u~ t !,

where j(t) and u(t) are statistically independent Gaussi
white-noise processes

^j~ t !j~0!&5^u~ t !u~0!&5d~ t !, ^j~ t !u~0!&50. ~12!

The analytical study of this model has been recently do
by Hänggi and co-workers@12#, whose analogous simula
tions of Eqs.~11! show the phenomenon of resonant activ
tion @13#. They have explained that the probability density
the Brownian particle is increasingly concentrated in t
tales of the potentials with growing inverse correlation tim
1/t.

In Fig. 1 we show the numerical results of the mean
cape time as a function of the inverse correlation time 1t.
The magnitude of colored noise is constant whilet varies:

s25Q/t5const. ~13!

As can be seen from the figure, the phenomenon of reso
activation takes place at the correlation timet'1 at which
the mean escape time takes its minimum. These results a
agreement with the analogous simulations of@13#.

FIG. 1. Mean escape time as a function oft for the model~10!.
Other parameters ares51.0 andD50.1.
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5052 55ANNETTE WITT, ALEXANDER NEIMAN, AND JÜRGEN KURTHS
III. LYAPUNOV EXPONENTS
IN NOISY BISTABLE SYSTEMS

In nonlinear dynamics Lyapunov exponents play a v
important role as indicators of chaos in the system un
study. Although Lyapunov exponents are well defined
stochastic systems~see @14#!, they no longer refer to the
Kolmogorov-Sinai entropy@15#. However, as we show be
low, the Lyapunov exponent and especially the lo
Lyapunov exponents might reflect main features of the ov
damped stochastic dynamics.

First, we deal with the Kramers oscillator. Let us consid
the separationdx(t) between two trajectories of a Brownia
particle, whose initial conditions differ bydx0, but with the
same noisej(t). The SDE for the separation reads

ḋx~ t !52
d2U~x!

dx2
dx~ t !5l~x,t !dx~ t !, ~14!

where the quantityl(x,t) is called thelocal (or instanta-
neous) Lyapunov exponent. ~The simple notion of the loca
Lyapunov exponent is valid for our one-dimensional ca
only. If the dimension of the phase space is greater tha
the direction of perturbations has to be taken into acco
too.! The Lyapunov exponent is then defined as the lo
time average of the local exponent@15#

L5 lim
t→`

1

t E0
t

l~x,s!ds5 lim
t→`

1

t
ln

udx~ t !u
udx0u

. ~15!

The long-time average in Eq.~15! can be replaced by a
averaging with respect to the stationary probability dens
~5!:

L5^l~x!&5E
2`

1`

l~x!ps~x!dx. ~16!

For the specified potential~2! we immediately obtain

L5123^x2&. ~17!

The second moment̂x2&5*2`
1`x2ps(x)dx might be ex-

pressed via the parabolic cylinder functions~see@16#!. Fi-
nally, we obtain for the Lyapunov exponent

L~D !5123AD

2

D23/2~21/A2D !

D21/2~21/A2D !
, ~18!

whereDc(z) is the parabolic cylinder function@17#.
From calculating the dependence ofL on the noise inten-

sity D ~Fig. 2!, we find that two distinct regimes may b
observed and the Lyapunov exponent takes its maxim
value for a certain noise intensityD (m)'0.22. . . . Now, we
discuss the reason for this extremum. This maximum i
sign of noisy bifurcation taking place in this system@9#. The
Lyapunov exponent is always negative due to noise-indu
global stability @18#. Therefore, at the bifurcation points o
noisy dynamical systems the Lyapunov exponent does
vanish, but has a smooth extremum@9#.

To discuss this aspect in more detail, let us consider
probability densityq(l) of the local Lyapunov exponents
This function can be obtained directly from the express
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for the stationary probability densityps(x) ~5! by using the
nonlinear transformationl5123x2:

q~l!5
N

A3
~12l!21/2expH 1

12D
@2~12l!2~12l!2/3#J .

~19!

The local extremal1,2 of this distribution are determined
from its first derivative, which yields

l1,252 1
27 3

2A124D. ~20!

It is easy to see that forD,1/4 the probability density for
the local Lyapunov exponent has two local extrema:
maximum at l152 1

22
3
2A124D and the minimum at

l252 1
21

3
2A124D. ForD.1/4 there are no local extrema

hence the noise intensityD (c)51/4 is the critical one. The
stationary probability density for the local Lyapunov exp
nents is shown in Fig. 3 for three cases of noise intens
D,D (c), D5D (c), andD.D (c). For small noise intensities
the distribution of the local Lyapunov exponent has t
maximum concentrating around negative valuel1. The ab-
solute value ofl1 corresponds to the characteristic rate f
probability to equilibrate within a well, while the region o
positive l refers to hoppings between potential wells. F
large noise there is a long tail in the negative branch ofl and
no extrema occur.

Note that the critical value of noise intensityD (c) at
which this bifurcationlike transition occurs is equal to th
barrier heightDU of the potential. This value is shifted
little bit relatively to that at which the Lyapunov expone
takes its maximumD (m). This is, however, an usual situatio
in noisy nonlinear systems where we cannot speak abo
bifurcation point, but rather about a bifurcation region b
cause different dynamical and probabilistic quantities disp
shifts of transition points between the two regimes@9#.

Thus we have shown that in stochastic bistable system~1!
the Lyapunov exponent takes its maximum for a cert
noise intensity. This maximum refers to a qualitative chan
in the shape of the probability distribution of local Lyapuno
exponents. This change occurs if the value of noise inten
is equal to the barrier height. Therefore, the abo

FIG. 2. Lyapunov exponent vs the noise intensity for the mo
~1!.
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55 5053CHARACTERIZING THE DYNAMICS OF STOCHASTIC . . .
mentioned transition corresponds to the destruction of
chastic bistability.For weak noise(D,DU) we have two
well-separated two characteristic time scales. The first, lo
range time scale is the Kramers time and corresponds to
random hoppings between potential wells. The second
refers to the short-range fluctuations within each well. T
distribution of the local Lyapunov exponent reflects this si
ation having local maximum that corresponds to the sh
range characteristic time scale.For large enough noise
strength(D.DU) the average time scale of switching b
comes comparable with those of motion within the we
Hence the Kramers theory is no longer valid. As a result,
distribution of the local Lyapunov exponents has no extrem

For the second model with the fluctuating barrier~10! an
exact analytical treatment is only possible in the limiti
cases of very slow and very fast colored noise@12#. Here we
study this model by means of numerical simulations of
appropriate SDE~10!. The dependence of the Lyapunov e
ponent on the noise intensity is qualitatively the same a
the previous model. If the Lyapunov exponent is regarded
a function of the correlation time of the barrier fluctuatio
t it exhibits a crossover behavior~see Fig. 4!. For very fast
barrier fluctuations the intensity of colored noiseQ vanishes
and the Lyapunov exponent saturates to that value obta
in the previous case without barrier fluctuations. In the c
of very slow barrier fluctuations, when the correlation time
longer than the mean escape time from a potential well,
ored noisey(t) forces potential to change adiabatically. F
large negative deviations ofy(t), the system can be
monostable for a long time, which leads to a decrease of
Lyapunov exponent. The crossover behavior refers to
values of correlation times at which the phenomenon of re
nant activation occurs. The probability density of the loc
Lyapunov exponentl(t)511y(t)23x2(t) again provides
more information as demonstrated in Fig. 5. For very sl
barrier fluctuations the probability density of the loc
Lyapunov exponent~curve 3! has a small bump and a max
mum. The maximum refers, as in the case with addit
white noise only, to the rate for probability to equilibra
within a well, while the bump corresponds to monosta
dynamics when the colored noisey(t) has large negative

FIG. 3. Probability density of the local Lyapunov exponent@cf.
Eq. ~19!# for different values of noise intensity:D,D (c) ~1!,
D5D (c) ~2!, andD.D (c) ~3!.
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deviations. Note that in contrast to the first model, where
range of possible values of the local Lyapunov expone
was bounded by the positive value11, for the second mode
this boundary is eliminated by barrier fluctuationy(t). With
decreasing correlation time of the barrier fluctuations
positive tail of the distribution of the local Lyapunov expo
nents grows, leading to an increase of the avera
Lyapunov exponent.

IV. MEASURES OF COMPLEXITY

In this section we represent some measures of comple
@19# and show whether they are useful to describe the
namics of bistable systems in some detail@22#. All these
measures of complexity are defined for symbol sequen
Therefore, we have first to coarse grain the trajectories of
considered systems in phase space and time.

The time axis is equidistantly scanned with a time s
D. The spatial position is reduced to the information
which half of the double-well potential the particle is sit
ated. This way we transform each trajectoryx(t) into a sym-
bol sequence

FIG. 4. Lyapunov exponent versust for the model~10!. Other
parameters areD50.1 ands51.

FIG. 5. Probability density of the local Lyapunov exponent f
the system~10! for different values of correlation time:t5100.0
~1!, t51.0 ~2!, andt50.01 ~3! with D51.0 ands51.
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5054 55ANNETTE WITT, ALEXANDER NEIMAN, AND JÜRGEN KURTHS
sD~k!5sgn„x~kD!…, ~21!

which makes an application of the concept of measure
complexity possible.

In the following we introduce some of these measur
Their properties are explained for a few elementary types
symbol sequences:~i! periodic symbol sequenceswith pe-
riod p; ~ii ! purely random sequences, in which the occur-
rence of the elements is completely uncorrelated~here only
such sequences with uniprobable symbols are regarded,
case of a coin flip!; and~iii ! Markov processes of order kin
which the structure of the symbol sequence is comple
described with the distribution of substrings of lengthk11.

A. Special measures of complexity

1. Shannon entropy

The traditional quantity for characterizing a symbol s
quence is the Shannon entropy@23#. The Shannon entropy o
nth order Hn is based on the probability distribution o
length-n substringssn ~words of lengthn) of the symbol
sequence

Hn52 (
snPAn,p~sn!.0

p~sn!log2p~sn!, ~22!

whereAn denotes the set of all length-n words.
Hn measures the average number of bits needed to sp

an arbitrary word of lengthn in a sequenceS. Their differ-
ences

hn5Hn112Hn , ~23!

h05H1 ~24!

quantify the information needed to determine the (n11)th
symbol of an arbitrary word of a given sequence if the fi
n symbols are known. The Shannon entropy of the system
then defined as the limit of thehn ,

h5 lim
n→`

hn . ~25!

It describes the mean information contents per symbol.
hn the following hold:~i! for period-p sequences allhn with
n>p vanish;~ii ! due to Eqs.~22! and~23! all hn are equal to
n in the case of purely random symbol sequences; and~iii !
for kth order Markov processes the entropy differences re
the value of the entropy withn5k; hn5hk for n.k. These
properties are similar to those of algorithmic complexi
both measures reach their maximum in the case of c
pletely uncorrelated symbol chains. Therefore, they
called measures of randomness. For describing dynam
phase transitions, other approaches are necessary.

2. Effective measure complexity

How the Shannon entropy differences converge to
Shannon entropy is of special meaning. This behavior can
analyzed in more detail in the approach of dynamical en
pies @15# where scaling laws of theHn’s are described. An-
other approach is the effective measure complexity~EMC!
of
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CEM introduced by Grassberger@24# as a special paramete
that characterizes this convergence behavior:

CEM5 (
n51

`

n~hn212hn!. ~26!

Small ~large! CEM corresponds to fast~slow! convergence.
For the exemplary models EMC behaves as follows.~i! If the
periodic behavior of periodp is considered, this implies

CEM5 log2p. ~27!

In the special case of a constant symbol sequence (p51),
EMC vanishes.~ii ! For purely random sequences one fin
hi51 for all i , which leads to a vanishing EMC.~iii ! For
kth-ordered Markov processes the EMC is reached for
first k summands of Eq.~26!.

For complex processes~e.g., with long-range memory!
infinitely many summands of the EMC can be positiv
moreover, it might be that their sum diverges. Divergi
complexity assigns to dynamical phase transitions, e.g., t
sitions from order to chaos via period doubling@19#.

3. Fluctuation complexitysG
2

Another way to characterize the complexity of dynamic
systems is based on the evaluation of local information g
and information loss@25#. Bates and Shepard@19# have in-
troduced a complexity measure called fluctuation in net
formation gain, which is defined as

sG
25^G2&2^G&2 ~28!

5(
i , j

pi j S log2pipj D
2

, ~29!

wherei and j are generalized states of a dynamical syste
In the case of symbol sequences when words of lengthn are
considered, this quantity reads

sG
2~n!5 (

wPAn21

s1 ,s2PA

p~s1•w•s2!S log2p~w•s2!

p~s1•w! D
2

. ~30!

Therebys1•w notates the concatenation of the symbols1
and the wordw.

Some of the essential properties of the fluctuation in
information gain are as follows.~i! In the case of periodic
behaviorsG(n) vanishes independently of the prime perio
p if sufficient long words are considered (n>p). ~ii ! For
uncorrelated sequences the fluctuation complexity does
depend on the word lengthn. In the case of purely random
behavior the complexity vanishes:sG

250. ~iii ! The fluctua-
tion complexity sG(n) behaves in dependence onn for
kth-order Markov processes periodically with periodk. The
fluctuation complexity indicate special phase transitions
dynamical systems as for the symbol sequences of b
merging points.

4. e complexity

It is well known that each finite-order Markov process c
be equivalently represented by a stochastic automaton@26#.
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55 5055CHARACTERIZING THE DYNAMICS OF STOCHASTIC . . .
Crutchfield and Young@27# suggested a technique that co
structs for a given symbol sequence a stochastic autom
callede machine that can reproduce the given sequence i
equivalent manner. Thee complexity Ce of the ~original!
sequence is then quantified by the Shannon entropy
respect to the probabilities of these automaton states. Te
complexity is based on state probabilities on the level of
automaton, which refer to both transition probabilities a
state probabilities on the level of the symbol sequence.

~i! The automaton constructed for the periodic sym
sequence (. . . 00100100100100 . . . ) ~Fig. 6! contains of a
closed loop composed of three final automaton states tha
occupied with same probability. Thee complexity is then
Ce5 ln3. Generally, all period-p sequences lead toe com-
plexity of log2.

~ii ! In the case of purely random sequences the autom
consist only of one state which implies vanishing comple
ity.

~iii ! For a kth-ordered Markov process an automaton
constructed that reproduces the exact structure of the orig
sequence. The complexity is evaluated between 0
k11.

For more general structured symbol sequences thee ma-
chine can only approximatively reproduce the given
quence. Thee complexity indicates phase transitions as t
accumulation point of the period doubling cascade or b
merging@19#.

In the case of symbol sequences induced by nonlin
deterministic dynamics, the properties of the nontraditio
measures of complexity such asCEM, sG(n), and Ce are
studied in detail@19#. These measures indicate qualitati
changes in the dynamics in a different manner; soCEM and
Ce mark the accumulation points of period doublin
whereas the fluctuation complexity points out band mergi
Further, these measures are successfully applied for diffe
problems in data analysis@20,21#. Therefore, it is promising
to use these measures for characterizing complex stoch
dynamics.

B. Results

1. The overdamped Kramers oscillator

The corresponding symbol sequences have a rather si
structure: Due to the uncorrelated noise source and the
that the separation point of the two areas defining the s

FIG. 6. e machine for a period-3 sequence.
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bols is a saddle point, the symbol sequences have only a
time-step memory, i.e., they all can be understood as Mar
processes of first order. These Markov processes are c
pletely described by the transition probabilitiesp(0→0)
5p(1→1)50.5(11Z) and p(1→0)5p(0→1)
50.5(12Z) as well as the additional conditionp05p1
50.5. Z is related to the MFPT under the special coa
graining of the time axisZ5exp@22D/T0(D)#.

The knowledge of all transition probabilities enables
analytic calculation of all complexity measures. For t
Shannon entropy we yield

h5h250.5$~11Z!log2~11Z!1~12Z!log2~12Z!%,
~31!

i.e., in the case of a fixed time stepD an increase of the nois
intensity leads to higher entropy, the fluctuations of the p
ticle between the two tales become more disordered. Furt
more, if the noise intensity is fixed and the time stepD is
raised, the entropy is growing also.

The effective measure complexity simplifies in this sp
cial case to

CEM5H12h1512h15$0.5~11Z!log2@0.5~11Z!#

1~12Z!log2@0.5~12Z!#%.

~32!

If this complexity is regarded as a function of noise intens
it is monotonically decreasing. This behavior reflects the
crease of the disorder in the motion of the particle.

The fluctuation in net information gain shows a com
pletely different behavior. It depends onZ as

sG
250.5~11Z!~12Z!S log2 ~12Z!

~11Z! D
2

~33!

and leads similar to the Lyapunov exponent to a one-hum
behavior. The maximum atZmax'0.834 depends on the
noise intensity as well on the time stepD. Small noise inten-
sities induce symbol sequences with long constant subse
which lead to small values ofsG

2 whereas symbol sequence
for large noise intensities are almost completely uncorrela
and are therefore characterized by small values ofsG

2 as
well.

Due to the special first-order Markov structure of t
symbol sequences the correspondinge machines are built
uniformly ~see Fig. 7!; only the probabilities of the edge
differ ~in dependence onZ). The symmetric structure of the
automata reflects the symmetry of the potential. Thee com-
plexity is a constant overD andD; Ce51. In the limit for
D→` the structure of the sequence is purely random, wh
leads to an automaton with only one state and a vanish
complexity.

2. The system with fluctuating barrier

The symbol sequences of this system~10! have more
complicated structures than the above sequences. The
herit long-time correlations of the term that is controlling t
fluctuations of the barrier. So we can find higher Mark
orders in dependence on the correlation time. In the cas
these more complicated dynamics, the transition probabili
cannot be calculated analytically. Therefore, we have to a
lyze results of numerical simulations. The different Shann
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entropy differenceshn ~Fig. 8! clearly show that the conver
gence to the Shannon entropyh is accelerated with growing
1/t; in particular, for 1/t.1 the limit h is reached withh1,
i.e., the symbol sequences can also be understood as a
kov process of first order as in the case of the system w
fixed barrier. For smaller values 1/t the symbol sequence
have to be interpreted as higher-order Markov processes

If only the limit of the Shannon entropy differences
considered, one finds the maximum entropy in the case
correlation timet51. At this parameter value the symb
sequences contain maximum information per symbol.

To study the influence of the firsthi on the EMC, we
also calculate a modified EMCĈEM5CEM2(h02h1)
5(n52

` n(hn212hn), where the first summand (h02h1) is
neglected. The behavior of these measures reflects tha
convergence speed of the Shannon entropy differenceshn ,
n>1, is accelerated with growing 1/t ~Fig. 9!. For 1/t.1
the Shannon entropy of the system is well approximated
h1, which leads to nearly vanishingĈEM. The original EMC
indicates lowest complexity fort51 because thehn ~includ-
ing n50) are all near the limith. Due to finite-size effects
the direct estimation of Markov order from thehi is difficult
to obtain reliably.

A quite different behavior is exhibited by the variation
net information gain~Fig. 10!. Qualitative changes in the
shape are located at 1/t50.2 ~the transition from increasing
to plateaulike behavior!, t51.0 ~the transition to increasing
behavior!, and 1/t515 ~the local maximum!. These extrema

FIG. 7. e machine for the sequences of the overdamped Kra
ers oscillator.

FIG. 8. Shannon entropy differences of different order in dep
dence on the inverse correlation time 1/t for the model~10!: full
line, h1; dotted line,h2; short-dashed line,h3; dash-dotted line,
h4; dash–triple-dotted line,h5; long-dashed line,h6.
ar-
th

of

the

y

mark alterations in the system properties. As explain
above, there are two typical characteristics of the sym
sequences that change for small inverse correlation ti
(0,1/t,1): on the one hand, the Shannon entropy is gro
ing, and on the other hand, the Markov order is decreas
The increase of the entropy, which reflects a transition fr
a nearly constant to a disordered symbol sequence, eff
the growth of the complexity, whereas the decrease of
Markov order causes the opposite. For 1/t,0.2 the growing
of the entropy is dominating, whereas for 0.2,1/t,1 the
balance of both influences leads to a nearly constant c
plexity. For inverse correlation times 1/t.1, the symbol se-
quences can be regarded as first-order Markov processe
therefore the behavior of the complexity is the same as
the first model with decreasing noise intensity and depe
only on the entropy. Therefore, the maximum arou
1/t515 corresponds to the maximum of the fluctuation co
plexity for the classical Kramers system.

The e complexity shows a decreasing behavior~Fig. 11!.
This reflects the above-mentioned fact that the sequences
be approximated by finite-order Markov processes, wh
order increases with growing 1/t. Same values ofe complex-
ity for different correlation times mark that the correspon
ing machines have the same topology; different probabili
of the edges are not considered bye complexity. So the six
visible plateaus refer to decreasing Markov orders.

-

-

FIG. 9. CEM and ĈEM ~dashed line! in dependence on the in
verse correlation time 1/t for the model~10!.

FIG. 10. SBC in dependence on the inverse correlation t
1/t for the model~10!.
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should be mentioned that the approximating machines
large values of 1/t are the same as in the Kramers case si
the fluctuations of the barrier are almost uncorrelated.

V. CONCLUSION

We have applied the concepts of local Lyapunov ex
nents and symbolic dynamics for understanding two type
stochastic bistable systems: the simple overdamped Kram
oscillator and an extended model with fluctuating barri
Using these techniques, we could explain the dynamics
the considered processes in more detail. Our special find
are the following.

~i! For the simple model, the overdamped Kramers os
lator, we can calculate all quantities of interest analytica
we have found a one-humped behavior of the Lyapunov
ponent in dependence on the noise intensity. The lo
Lyapunov exponents provide a more detailed understan
of the dynamics: their distribution reflects the breakdown
the stochastic bistability by growing noise intensity. T
noise intensityD (C), at which the maximum of the Lyapuno
exponentL(D) is reached, refers to this transition.

Due to the symmetric first-order Markov structure of t
coarse-grained trajectories, all measures of complexity
be rewritten directly in terms of the mean escape time, i.e
only the motion between the two halves of the potentials
considered this can be described by this mean escape
completely. The different transition probabilities between
potential wells that are caused by different noise intensi
are reflected in the shape of the measures of complexity
cifically: Shannon entropy is increasing, whereas the eff
tive measure complexity is decreasing and the fluctua
complexity shows, similarly to the Lyapunov exponents
one-humped behavior. Only thee complexity is constant for
all noise intensities since it evaluates the topological equ
lence of all considered symbol sequences. Hence the find
for both concepts are in accordance with the well-kno
ones if that traditional approach is sufficient for the descr
tion.

~ii ! For the more complicated model with the fluctuati
barrier the Lyapunov exponent demonstrates the cross
behavior being a function of the correlation time of barr
fluctuations. Such a simple dependence of the measure

FIG. 11. e complexity in dependence on the inverse correlat
time 1/t for the model~10!.
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complexity from the mean escape time as in the case
Kramers oscillator does not exist here. Due to long-ran
correlations in the motion between the halves of the pot
tials, it is not sufficient to consider the mean escape time
a complete description. The measures of complexity enab
more detailed view of the structure of those correlatio
However, at the correlation time of barrier fluctuation
where the phenomenon of resonant activation occurs,
measures of complexity show an extremum. The Shan
entropy has its maximum value there and the EMC takes
minimum; both are due to the most disordered motion
tween the two potential halves. Moreover,sG

2 has a turning
point at this correlation time and two further extrema th
mark changes in the relation of the growth rates of Mark
order and entropy. Thee complexity indicates the decreas
of the Markov order and therefore shows a monotonic
havior.

~iii ! The measures we used can also be applied to s
the phenomena of stochastic resonance. In this case
double-well potential is modulated by an external perio
bias. Therefore, the output signal contains a periodic com
nent. Since Lyapunov exponent is a measure of linear div
gence of nearby trajectories it is not an appropriate mea
for SR. So the only change in the Lyapunov exponent fo
bistable system with periodic bias in comparison with t
original system that we found is that the Lyapunov expon
decreases with the increase of the amplitude of the bias
the value of noise intensity at which the Lyapunov expon
takes its maximum becomes shifted.

By using a full-scale experiment with the Schmitt trigg
circuit in @5#, it was shown that the source Shannon entro
of the output signal processes a minimum being evalua
versus the noise intensity. This minimum refers to an optim
value of noise level at which SR occurs. We present here
results of calculations of measures of complexity, e.g.,
source entropy~calculated with the algorithm of algorithmi
complexity! and EMC for numerical simulations of th
Schmitt trigger system

y5sgn„DV•y2Asin~Vt !2j~ t !…, ~34!

FIG. 12. Mean switching frequency vs noise intensity for t
Schmitt trigger system~34!. The parameters of the trigger ar
DV50.2, f c5100,A50.15, andV50.5.
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whereDV refers to the threshold level of the trigger an
j(t) is colored Gaussian noise with a cutoff frequencyf c and
an intensityD. We analyze the output of the Schmitt trigg
y(t), which is a dichotomic stochastic process. The dep
dence of the mean switching frequency~MSF! between
states of the trigger versusD is shown in Fig. 12 and show
the effect of the MSF locking@28#: in a certain region of
noise intensity the MSF is almost constant and equal to
frequency of external bias. The measures of complexity
shown in Fig. 13. For a very weak noise intensity the swit
ing events between metastable states are rare, so tha

FIG. 13. ~a! Shannon entropy and~b! CEM versus noise inten-
sity. The parameters are the same as in Fig. 12.
try
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system exhibits an intermittentlike behavior. As a result,
source entropy is very small. With the increase of noise
tensity the MSF increases, but still more slowly than t
driving frequency of the bias. The randomness of the out
signal increases as well. At the border of the synchroniza
region, where the MSF matches the frequency of exter
bias, the fluctuations of the escape times are maximal, an
a result, the structure of the output signal is most compl
the source entropy takes its maximum, while EMC takes
minimal value. After the switching events are synchroniz
by the periodic force, the source entropy decreases and t
its minimum at the value of noise intensity that correspon
to the maximum of the signal-to-noise ratio~see@5,29#!, i.e.,
to SR. EMC@Fig.13~b!# also reflect this behavior: EMC pro
cesses a minimum at the border of the synchronization
gion and a maximum at the optimal noise intensity where
occurs.

Summarizing, we have shown that the dynamics of s
chastic bistable systems can be described completely
Lyapunov exponents and mean escape time only if the
tem has a rather simple structure. For more complex
therefore more interesting systems we emphasize the ne
analyze distributions of local Lyapunov exponents and
apply techniques of symbolic dynamics as appropriate to
for the study of such systems. Measures of complexity all
us to describe dynamical aspects of the motion between
potential wells and represent, therefore, in comparison w
the mean escape time, a more general approach for des
ing the coarse-grained trajectories. The concept of meas
of complexity becomes especially important for experime
tal investigations, where we have only one observable, wh
often prevents an application of the concept of Lyapun
exponents.
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