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Characterizing the dynamics of stochastic bistable systems by measures of complexity
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The dynamics of noisy bistable systems is analyzed by means of Lyapunov exponents and measures of
complexity. We consider both the classical Kramers problem with additive white noise and the case when the
barrier fluctuates due to additional external colored noise. In the case of additive noise we calculate the
Lyapunov exponents and all measures of complexity analytically as functions of the noise intensity or the mean
escape time, respectively. For the problem of a fluctuating barrier the usual description of the dynamics with
the mean escape time is not sufficient. The application of the concept of measures of complexity allows us to
describe the structures of motion in more detail. Most complexity measures indicate the value of the correlation
time at which the phenomenon of resonant activation occurs with an extref8d063-651X97)06504-5

PACS numbdis): 05.40:+j

[. INTRODUCTION dynamics: distributions of local Lyapunov exponents and
methods of symbolic dynamics. The use of these methods is
Phenomena of noisy bistability are archetypical for wideobvious for such systems because we can naturally introduce
areas of physics, chemistry, and biology. With the classicaf two-symbol alphabet corresponding to the two most prob-
work of Kramer's[1] theoretical and experimental investiga- able regions in the phase space of the system.
tions these phenomena became a field of intensive investiga- Such symbol sequences can be characterized by a broad
tions in nonlinear sciencesee, e.g.[2]). Recently, two non-  class of so-called measures of complexity. Traditional mea-
linear cooperative phenomena have been discovered for flres of complexity, such as Shannon entropy or algorithmic
general class of noisy bistable systems: the phenomenon §Pmplexity, are measures of randomness or disorder. Re-
stochastic resonance and the phenomenon of resonant acti&gntly, many alternative measures of complexity have been
tion. Stochastic resonancéSR) occurs in bistable systems Proposed. They yield maximal complexity if the system
that are simultaneously driven by noise and a periodic signaPasses a critical value, e.g., it switches between regular and
Tuning the noise intensity, an enhancement of the responfﬁhaotic behavior. We discuss in the case of the classical
of the system to the periodic force becomes possiBle ~ Kramers problem the relation between these measures of
This effect appears when the mean escape rate from a welPmplexity and the traditional measures for describing
coincides with the frequency of the periodic signal. Recently bistable systems. For the more complex system with the fluc-
SR has been studied in terms of information thephp]. tuating barrier we show that the traditional parameters, such
The phenomenon ofesonant activationtakes place in as mean escape time or global Lyapunov exponents, are not
bistable system with fluctuating barriers. In this case thesufficient for a complete characterization of the dynamics
bistable system is driven by additive noise, which models thénd we will explain that measures of complexity give some
thermal fluctuations, and by muiltiplicative colored noise,additional information about the motion of the Brownian
which leads to fluctuations of the barrier height. Tuning theparticle. This becomes especially important for the analysis
correlation time of the multiplicative noise, a minimization Of time series obtain from experimental sets when classical
of the mean escape time from a well can be obtained: for aguantities become difficult to calculable.
optimal value of the noise correlation time the mean escape This paper is organized as follows. In Sec. Il we describe
time takes its minimuni6]. Both phenomena underline the the models and discuss the behavior of classical quantities,
nontrivial behavior of nonlinear dynamical systems under theésuch as stationary probability density or mean first-passage
influence of noise. time. The Lyapunov exponents are studied in Sec. Ill. Sec-
The study of nonlinear stochastic systems in terms of théion IV is devoted to measures of complexity. Finally, the
Fokker-Planck formalism simply allows us to analyze theresults are discussed in Sec. V.
stationary distributions and the mean first-passage times for
low-dimensional systems. However, the detailed dynamical
description of motion is difficult to obtain both analytically Il. MODELS

and numerically. In thi_s paper we Fherefore apply_ two_other We treat the very popular model of an overdamped Kram-
approaches from nonlinear dynamics to study noisy bistablg s gscillator
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U(x)=—3x*+3x%, ) 500

where&(t) is the zero-mean Gaussian white noise

(E(E(t"))y=0o(t—t"). 3) 400 |

The stochastic differential equatid®DE) (1) describes the
noisy dynamics of an over-damped Brownian particle in the  +~ 300t
double-well potential . The stationary probability density is

yielded as the solution of the appropriate Fokker-Planck

equation 200 | q
AP(X,1) =D dyxP(X, 1) + [ U (X)p(X,1)], (4)
which has the steady-state solution 100 = P P 10 o
U(x) "
Ps()= Nexp{ D [ ®) FIG. 1. Mean escape time as a functionrdbr the model(10).

Other parameters are=1.0 andD =0.1.

where N is the normalization constant
N~1=[*"exg—U(x)/D]dx The stationary distribution has biological transporf10] or the dynamics of a dye lasgt1].
two maxima corresponding to the stable states of the approFhe nontrivial phenomenon that occurs in such systems is
priate dynamical system and a minimum at the origin referthe so-called resonant activation: there is an optimal value of
ring to the saddle point=0. correlation time of multiplicative noise at which the mean

The quantity of crucial interest in noisy bistable dynamicsescape time from a well takes its minimal value. The model
is the mean first-passage tifdFPT) of the top of the po- we study here is the same as the previous one, but with an
tential. This quantity can be obtained from the Pontryaginadditional colored noise source that modulates the barrier
equation[7] height:

d?T(x) dT(x) B dU(x)

D— 7~V () =L (6) X= Ix +2D E(t) + xy(1); (10)

As boundary conditions for th@(x) we have chosen an Y(t) is exponentially correlated Gaussian noise that is mod-
absorbing boundary condition at the top of the barriereled by an Ornstein-Uhlenbeck process. Thus the two-

(x=0) and a reflecting boundary conditionat> — oc: dimensional Markov process is described by the set of SDEs
dT x=x—x3+ 2D &(t) +
T(x=0)=0, E((X—>—oo):0' 7) X=X—X &) +xy, (17
_ _ y V2Q
The mean escape time from the left potential well is then the y=- ;+ T (1),

solution of Eq.(6) with the specified initial condition&’) [8]
where £(t) and 6(t) are statistically independent Gaussian

1o y white-noise processes
TO(D)=Bf_ldyexp:U(y)/D]f_wexq—U(z)/D]dz. p
®) (E(DE(0))=(0(1)8(0))= (1), (&(1)6(0))=0. (12)

This quantity diverges when the noise intensity tends to zero. The analytical study of this model has been recently done
For small noise intensitie® <AU, whereAU is the barrier by Hanggi and co-workerg12], whose analogous simula-

height, To(D) follows the well-known Arrhenius law tions of Egs.(11) show the phenomenon of resonant activa-
tion [13]. They have explained that the probability density of
To(D)xexp(AU/D), (99  the Brownian particle is increasingly concentrated in the

tales of the potentials with growing inverse correlation time

whereas for strong noisd(>AU) the Arrhenius law is no 1.
longer valid. This transition does not disturb the stationarity | Fig. 1 we show the numerical results of the mean es-
of the probability density and becomes visible if we calculatecape time as a function of the inverse correlation time 1/
g‘e 8660[0qu derivative of the quantifip(D). It vanishes at  The magnitude of colored noise is constant whilearies:

The second objective studied here are bistable systems o?=Q/ r=const. (13
simultaneously driven by Gaussian white noise and multipli-
cative colored noise. This class of models refers to a topic ofAs can be seen from the figure, the phenomenon of resonant
high recent interest in the analysis of stochastic nonlineaactivation takes place at the correlation time 1 at which
systems, namely, to the problem of surmounting fluctuatinghe mean escape time takes its minimum. These results are in
barriers[6]. It describes a variety of physical situations, e.g.,agreement with the analogous simulationg 18].
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IIl. LYAPUNOV EXPONENTS
IN NOISY BISTABLE SYSTEMS

-1.50

In nonlinear dynamics Lyapunov exponents play a very
important role as indicators of chaos in the system under
study. Although Lyapunov exponents are well defined for
stochastic systemésee[14]), they no longer refer to the
Kolmogorov-Sinai entropy15]. However, as we show be-
low, the Lyapunov exponent and especially the local
Lyapunov exponents might reflect main features of the over-
damped stochastic dynamics.

First, we deal with the Kramers oscillator. Let us consider
the separatio®x(t) between two trajectories of a Brownian
particle, whose initial conditions differ bgx,, but with the
same noisé&(t). The SDE for the separation reads

-1.60 -

-1.70 +

-1.80

_1 '90 L 1 1
0.05 0.35 0.45 0.55

D

0.15 0.25

d?U(x)
dx?

SX(1) SX(1)=X\(x,t) (1), (14)

where the quantity\ (x,t) is called thelocal (or instanta-
neous) Lyapunov exponeriThe simple notion of the local

FIG. 2. Lyapunov exponent vs the noise intensity for the model

(2).

for the stationary probability densngs(x) (5) by using the
nonlinear transformation = 1— 3x?:

Lyapunov exponent is valid for our one-dimensional case

only. If the dimension of the phase space is greater than 1,

the direction of perturbations has to be taken into accountd(\)=
too) The Lyapunov exponent is then defined as the long-

time average of the local expondni5]

s

The long-time average in Eq15) can be replaced by an

averaging with respect to the stationary probability densityt is easy to see that fdd <1/4 the probability density for
5): the local Lyapunov exponent has two local extrema: the
maximum at \;=—3—3/1—4D and the minimum at

%(1—)\)‘1/29xp{ pl2(1-M-(1- N)2/3] ¢
(19

The local extrema\,, of this distribution are determined
from its first derivative, which yields

In——

Sx(t)]|

A=lim
| 8%o|

t—oo

A(x,s)ds= I|m (15

t—

)\1’22—%12 1-4D. (20)

+o0 2
A:()\(X»ZJ A(X)ps(X)dX. (16) Np=—3+3\1-4D. ForD>1/4 there are no local extrema,
- hence the noise intensip(?=1/4 is the critical one. The
- . . : . stationary probability density for the local Lyapunov expo-
For the specified potentia?) we immediately obtain nents is shown in Fig. 3 for three cases of noise intensity:
A=1-3(x2). (177 D<D®, D=D®, andD>D. For small noise intensities

the distribution of the local Lyapunov exponent has the
maximum concentrating around negative value The ab-
solute value ofA; corresponds to the characteristic rate for
probability to equilibrate within a well, while the region of
positive N refers to hoppings between potential wells. For
large noise there is a long tail in the negative branckh ahd
no extrema occur.

Note that the critical value of noise intensi© at
whereD(2) is the parabolic cylinder functiofil7]. which this bifurcationlike transition occurs is equal to the

From calculating the dependence/ofon the noise inten- barrier heightAU of the potential. This value is shifted a
sity D (Fig. 2), we find that two distinct regimes may be little bit relatively to that at which the Lyapunov exponent
observed and the Lyapunov exponent takes its maximurtakes its maximunD (™. This is, however, an usual situation
value for a certain noise intensi(™~0.22. ... Now, we in noisy nonlinear systems where we cannot speak about a
discuss the reason for this extremum. This maximum is difurcation point, but rather about a bifurcation region be-
sign of noisy bifurcation taking place in this syst¢f]. The  cause different dynamical and probabilistic quantities display
Lyapunov exponent is always negative due to noise-inducesdhifts of transition points between the two regini@s
global stability[18]. Therefore, at the bifurcation points of = Thus we have shown that in stochastic bistable sygigm
noisy dynamical systems the Lyapunov exponent does ndhe Lyapunov exponent takes its maximum for a certain
vanish, but has a smooth extrem{gj. noise intensity. This maximum refers to a qualitative change

To discuss this aspect in more detail, let us consider thn the shape of the probability distribution of local Lyapunov
probability densityq(\) of the local Lyapunov exponents. exponents. This change occurs if the value of noise intensity
This function can be obtained directly from the expressions equal to the barrier height. Therefore, the above-

The second momen{x?)=[TZx2p(x)dx might be ex-
pressed via the parabolic cylinder functiofsee[16]). Fi-
nally, we obtain for the Lyapunov exponent

D_3—1//2D)

D
A(D)—1—3\/;m, (18
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FIG. 3. Probability density of the local Lyapunov expongeft FIG. 4. Lyapunov exponent versusfor the model(10). Other
Eq. (19)] for different values of noise intensityd<D(© (1), parameters arB=0.1 ando=1.

D=D( (2), andD>D© (3).
deviations. Note that in contrast to the first model, where the

mentioned transition corresponds to the destruction of storange of possible values of the local Lyapunov exponents
chastic bistability.For weak noisg(D<AU) we have two was bounded by the positive valuel, for the second model
well-separated two characteristic time scales. The first, longthis boundary is eliminated by barrier fluctuatip(t). With
range time scale is the Kramers time and corresponds to thdecreasing correlation time of the barrier fluctuations the
random hoppings between potential wells. The second ongositive tail of the distribution of the local Lyapunov expo-
refers to the short-range fluctuations within each well. Thenents grows, leading to an increase of the averaged
distribution of the local Lyapunov exponent reflects this situ-Lyapunov exponent.
ation having local maximum that corresponds to the short-
range characteristic time scal&.or large enough ﬂoise IV. MEASURES OF COMPLEXITY
strength(D>AU) the average time scale of switching be-
comes comparable with those of motion within the wells. In this section we represent some measures of complexity
Hence the Kramers theory is no longer valid. As a result, th¢19] and show whether they are useful to describe the dy-
distribution of the local Lyapunov exponents has no extremanamics of bistable systems in some def@P]. All these

For the second model with the fluctuating barii&®) an  measures of complexity are defined for symbol sequences.
exact analytical treatment is only possible in the limiting Therefore, we have first to coarse grain the trajectories of the
cases of very slow and very fast colored ndi$2]. Here we  considered systems in phase space and time.
study this model by means of numerical simulations of the The time axis is equidistantly scanned with a time step
appropriate SDE10). The dependence of the Lyapunov ex- A. The spatial position is reduced to the information in
ponent on the noise intensity is qualitatively the same as invhich half of the double-well potential the particle is situ-
the previous model. If the Lyapunov exponent is regarded aated. This way we transform each traject&(y) into a sym-
a function of the correlation time of the barrier fluctuationsbol sequence
7 it exhibits a crossover behavi¢see Fig. 4 For very fast
barrier fluctuations the intensity of colored noifQevanishes
and the Lyapunov exponent saturates to that value obtained
in the previous case without barrier fluctuations. In the case
of very slow barrier fluctuations, when the correlation time is 020 | i
longer than the mean escape time from a potential well, col- 2
ored noisey(t) forces potential to change adiabatically. For
large negative deviations of/(t), the system can be
monostable for a long time, which leads to a decrease of the
Lyapunov exponent. The crossover behavior refers to the 0.10 | .
values of correlation times at which the phenomenon of reso-
nant activation occurs. The probability density of the local
Lyapunov exponenh (t)=1+y(t)—3x?(t) again provides
more information as demonstrated in Fig. 5. For very slow
barrier fluctuations the probability density of the local 0.00 : : t ‘ : :
Lyapunov exponentcurve 3 has a small bump and a maxi- S0 80 60 40 N 200020 40
mum. The maximum refers, as in the case with additive
white noise only, to the rate for probability to equilibrate  FIG. 5. Probability density of the local Lyapunov exponent for
within a well, while the bump corresponds to monostablethe system(10) for different values of correlation timez=100.0
dynamics when the colored nois€t) has large negative (1), =1.0(2), and=0.01(3) with D=1.0 ando=1.
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sa(k) =sgn(x(kA)), (22 Cgn introduced by Grassbergg?4] as a special parameter
that characterizes this convergence behavior:
which makes an application of the concept of measures of
complexity possible.
In the following we introduce some of these measures. Cem= 2‘1 n(hy-1=Ny). (26)
Their properties are explained for a few elementary types of

symbol sequencesi) periodic symbol sequencetith pe-  Small (large) Cgy corresponds to fagslow) convergence.
riod p; (i) purely random sequences which the occur-  For the exemplary models EMC behaves as follo@sf the

rence of the elements is completely uncorrelatieeie only  periodic behavior of periog is considered, this implies
such sequences with uniprobable symbols are regarded, as in

case of a coin flig and (iii) Markov processes of orderik Cem=log,p. 27
which the structure of the symbol sequence is completel

described with the distribution of substrings of length 1. In the special case of a constant symbol sequepeel(),
EMC vanishes(ii) For purely random sequences one finds

h;=1 for all i, which leads to a vanishing EMGiii) For
kth-ordered Markov processes the EMC is reached for the
1. Shannon entropy first k summands of Eq26).

The traditional quantity for characterizing a symbol se-, FOT complex processe.g., with long-range memory

guence is the Shannon entrd@®8]. The Shannon entropy of infinitely mfany_summands of Fhe EMC can be positiye;
nth order H,, is based on the probability distribution of moreover, it might be that their sum diverges. Diverging

; n complexity assigns to dynamical phase transitions, e.g., tran-
lengthn substringss" (words of lengthn) of the symbol sitions from order to chaos via period doublifg].

©

A. Special measures of complexity

sequence
3. Fluctuation complexityo:
Ho=— nz ] p(s")logzp(s"), (22 Another way to characterize the complexity of dynamical
s'eA",p(s")>0 . . . . .
systems is based on the evaluation of local information gain

H, measures the average number of bits needed to specifjpduced a complexity measure called fluctuation in net in-
an arbitrary word of lengtm in a sequencé. Their differ- ~ formation gain, which is defined as

ences o2=(I'?)—(T')? (28)
hn=Hn.1—Hp, (23 P, 2
= M log,— 2
ho=H, (24 % p”( ngpj) ’ 29

quantify the information needed to determine tmer(1)th ~ Wherei andj are generalized states of a dynamical system.
symbol of an arbitrary word of a given sequence if the firstln the case of symbol sequences when words of lengihe

n symbols are known. The Shannon entropy of the system igonsidered, this quantity reads
then defined as the limit of thie, ,

2,8 _ P(W-S,) |2
h=limh,. (25) Ur(n)_wE%* P(S1-W-S,) Ing—p(Sl-W) . (30
n—e S1,5p€ A

It describes the mean information contents per symbol. Fofherebys,-w notates the concatenation of the symisel

h,, the following hold:(i) for periodp sequences ali, with  and the wordw.

n=p vanish;(ii) due to Egs(22) and(23) all h,, are equal to Some of the essential properties of the fluctuation in net
n in the case of purely random symbol sequences;(@nd information gain are as followdi) In the case of periodic

for kth order Markov processes the entropy differences reachehaviora(n) vanishes independently of the prime period
the value of the entropy with=k; h,=h, for n>k. These p if sufficient long words are consideresh¥p). (ii) For
properties are similar to those of algorithmic complexity; uncorrelated sequences the fluctuation complexity does not
both measures reach their maximum in the case of comdepend on the word length. In the case of purely random
pletely uncorrelated symbol chains. Therefore, they ardehavior the complexity vanishes§=0. (iii) The fluctua-
called measures of randomness. For describing dynamicéibn complexity o-(n) behaves in dependence an for

phase transitions, other approaches are necessary. kth-order Markov processes periodically with periodThe
fluctuation complexity indicate special phase transitions in
2. Effective measure complexity dynamical systems as for the symbol sequences of band

How the Shannon entropy differences converge to thd"€'9ing points.
Shannon entropy is of special meaning. This behavior can be
analyzed in more detail in the approach of dynamical entro-
pies[15] where scaling laws of thel,’s are described. An- It is well known that each finite-order Markov process can
other approach is the effective measure complef@yiC)  be equivalently represented by a stochastic automi@6h

4. € complexity
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bols is a saddle point, the symbol sequences have only a one
time-step memory, i.e., they all can be understood as Markov
processes of first order. These Markov processes are com-
pletely described by the transition probabilitipg0—0)
=p(1—1)=0.5(1+2) and p(1—-0)=p(0—1)
=0.5(1-2) as well as the additional conditiopy=p,
=0.5. Z is related to the MFPT under the special coarse
graining of the time axi¥=ex{d —2A/Ty(D)].

The knowledge of all transition probabilities enables an
analytic calculation of all complexity measures. For the
Shannon entropy we yield

h=h,=0.5{(1+Z)logy(1+2Z)+(1-Z)logy(1—2)},
(31

i.e., in the case of a fixed time st&pan increase of the noise

intensity leads to higher entropy, the fluctuations of the par-

Crutchfield and Young27] suggested a technique that con- ticle between the two tales become more disordered. Further-

structs for a given symbol sequence a stochastic automatanore, if the noise intensity is fixed and the time stegs

callede machine that can reproduce the given sequence in ar@ised, the entropy is growing also.

equivalent manner. The complexity C. of the (original) ) The effective measure complexity simplifies in this spe-

sequence is then quantified by the Shannon entropy witkial case to

respect to the probabilities of these automaton states.eThe o —1_h —

complexity is based on state probabilities on the level of the Cem=H1=h1=1-M={0.51+2)log[ 0.1 +2)]

automaton, which refer to both transition probabilities and +(1-2)log,[0.51-2)]}.

state probabilities on the level of the symbol sequence. 32)
(i) The automaton constructed for the periodic symbol

sequence (..001001001001®. . .) (Fig. 6 contains of a If this complexity is regarded as a function of noise intensity

closed loop composed of three final automaton states that atieis monotonically decreasing. This behavior reflects the in-

occupied with same probability. The complexityis then  crease of the disorder in the motion of the particle.

FIG. 6. e machine for a period-3 sequence.

C.=In3. Generally, all periogr sequences lead te com- The fluctuation in net information gain shows a com-
plexity of log,. pletely different behavior. It depends @nas
(ii) In the case of purely random sequences the automaton (1-2)\2
consist only of one state which implies vanishing complex- a%=0.51+2)(1—2)( |ngm (33
ity.

(i) For akth-ordered Markov process an automaton is
constructed that reproduces the exact structure of the origin
sequence. The complexity is evaluated between 0O anﬁ

k+Fl. | structured bol e sities induce symbol sequences with long constant subseries,
or more general structured Symbol SeqUENCeE - i jead to small values af% whereas symbol sequences

chine ‘can only approximatively reproduce the given S€or large noise intensities are almost completely uncorrelated

guence. Thes complexity indicates phase transitions as the .
. : : . nd are therefore characterized by small valuesrpfas
accumulation point of the period doubling cascade or band'

. well.
merging[19]. S
In the case of symbol sequences induced by nonlinear Due to the special first-order Markov structure of the

deterministic dynamics, the properties of the nontraditionaF‘yr.nbo' sequences the correspondmgr_lg_chmes are built
measures of complexity such &y, or(n), and C, are uniformly (see Fig. J; only the probabilities of the edges

studied in detail[19]. These measures indicate qualitatived'ﬁ;er (Irtl depﬂen(:er:r(]:e OF). Thte syfrr:rrpetn(‘:[ St?"ﬁt%ﬁ;f the
changes in the dynamics in a different mannerCsg, and automata reflects the symmetry of the potential. m-

C. mark the accumulation points of period doubling, plexity is a constant oveb andA; Cf._l' In the limit for .
whereas the fluctuation complexity points out band mergingD_)oo the structure of thelsequence is purely random, Wh'.Ch
Further, these measures are successfully applied for differeJ\‘?adS to an automaton with only one state and a vanishing
problems in data analysj20,21]. Therefore, it is promising complexity.

to use these measures for characterizing complex stochastic 2. The system with fluctuating barrier

dynamics.

nd leads similar to the Lyapunov exponent to a one-humped
ehavior. The maximum af,,~0.834 depends on the
oise intensity as well on the time stdp Small noise inten-

The symbol sequences of this systéf0) have more

complicated structures than the above sequences. They in-

B. Results herit long-time correlations of the term that is controlling the

fluctuations of the barrier. So we can find higher Markov
orders in dependence on the correlation time. In the case of
The corresponding symbol sequences have a rather simplleese more complicated dynamics, the transition probabilities
structure: Due to the uncorrelated noise source and the factinnot be calculated analytically. Therefore, we have to ana-
that the separation point of the two areas defining the symlyze results of numerical simulations. The different Shannon

1. The overdamped Kramers oscillator
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FIG. 7. € machine for the sequences of the overdamped Kram- I
ers oscillator. ool el L 1
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entropy differences,, (Fig. 8) clearly show that the conver- 1

gence to the Shannon entropyis accelerated with growing
1/7; in particular, for 14#>1 the limith is reached witth,,
i.e., the symbol sequences can also be understood as a M
kov process of first order as in the case of the system with . . . .
fixed barrier. For smaller values AAthe symbol sequences mark alterations in the §ystem prope_rﬂg:s. As explained
have to be interpreted as higher-order Markov processes. above, there are wo typical chargcterlstlcs of the_ Sy”?bf"
If only the limit of the Shannon entropy differences is sequences that change for small inverse correlatpn times
considered, one finds the maximum entropy in the case Q(f0<1/7<1): on the one hand, the Shannon ent.ropy IS grow-
correlation timer=1. At this parameter value the symbol Ing, gnd on the other hand, the _Markov order is dec_:reasmg.
sequences contain maximum information per symbol. The increase of the entropy, which reflects a transition from
To study the influence of the firdt; on the EMC, we a nearly constant to a dlsqrdered symbol sequence, effects
also calculate a modified EMOCey=Cey—(hg—hy) the growth of the complexity, whereas the decrease of the

i ; : Markov order causes the opposite. For<10.2 the growing
=Zp-2N(hy_1—Ny), where the first summanch§—h.) iS¢ the entropy is dominating, whereas for €.2/7<1 the

neglected. The behavior of these measures reflects that ”E)%\Iance of both influences leads to a nearly constant com-
convergence speed of the Shannon entropy differehges  hjexity. For inverse correlation times## 1, the symbol se-

n=1, is accelerated with growing 4AFig. 9. For 1#/>1  gyences can be regarded as first-order Markov processes and
the Shannon entropy of the system is well approximated byherefore the behavior of the complexity is the same as for
h;, which leads to nearly vanishin@gy. The original EMC  the first model with decreasing noise intensity and depends
indicates lowest complexity for=1 because thh, (includ-  only on the entropy. Therefore, the maximum around
ing n=0) are all near the limih. Due to finite-size effects, 1/r=15 corresponds to the maximum of the fluctuation com-
the direct estimation of Markov order from theis difficult  plexity for the classical Kramers system.

to obtain reliably. The e complexity shows a decreasing behaviBig. 11).

A quite different behavior is exhibited by the variation in This reflects the above-mentioned fact that the sequences can
net information gain(Fig. 10. Qualitative changes in the be approximated by finite-order Markov processes, whose
shape are located at7E 0.2 (the transition from increasing order increases with growing4/Same values of complex-
to plateaulike behavigy 7= 1.0 (the transition to increasing ity for different correlation times mark that the correspond-
behavioy, and 1/=15 (the local maximum These extrema ing machines have the same topology; different probabilities
of the edges are not considered égomplexity. So the six
visible plateaus refer to decreasing Markov orders. It

FIG. 9. Cgy and Cgy, (dashed lingin dependence on the in-
prse correlation time %/for the model(10).

0.8 T
20 [ T T T
= I
L e 10 .
0.2~ -
L 0.5 - y
0.0 I | { r 1
10°° 1071 109 10! 10° I ]
T OAO’» L | ! ]
1072 1071 100 10! 10°
FIG. 8. Shannon entropy differences of different order in depen- /T
dence on the inverse correlation timer ¥6r the model(10): full
line, hy; dotted line,h,; short-dashed linehs; dash-dotted line, FIG. 10. SBC in dependence on the inverse correlation time

h,; dash—triple-dotted lines; long-dashed linehg. 1/7 for the model(10).
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FIG. 11. e complexity in dependence on the inverse correlation FIG. 12. Mean switching frequency vs noise intensity for the
time 1/ for the model(10). Schmitt trigger system34). The parameters of the trigger are
AV=0.2,f,=100,A=0.15, and(}=0.5.

should be mentioned that the approximating machines for
large values of I/ are the same as in the Kramers case sinceomplexity from the mean escape time as in the case of
the fluctuations of the barrier are almost uncorrelated. Kramers oscillator does not exist here. Due to long-range
correlations in the motion between the halves of the poten-
tials, it is not sufficient to consider the mean escape time for
V. CONCLUSION a complete description. The measures of complexity enable a

We have applied the concepts of local Lyapunov expoMore detailed view of thg strl_Jcture of thqse correla_tions.
nents and symbolic dynamics for understanding two types offowever, at the correlation time of bar_rler. fluctuations,
stochastic bistable systems: the simple overdamped Kramey¢ere the phenomenon of resonant activation occurs, all
oscillator and an extended model with fluctuating barriermeasures of complexity show an extremum. The Shannon
Using these techniques, we could explain the dynamics ogntropy has its maximum value there and the EMC takes its
the considered processes in more detail. Our special finding®inimum; both are due to the most disordered motion be-
are the following. tween the two potential halves. Moreover% has a turning

(i) For the simple model, the overdamped Kramers oscilpoint at this correlation time and two further extrema that
lator, we can calculate all quantities of interest analytically:mark changes in the relation of the growth rates of Markov
we have found a one-humped behavior of the Lyapunov exorder and entropy. The complexity indicates the decrease

ponent in dependence on the noise intensity. The locajf the Markov order and therefore shows a monotonic be-
Lyapunov exponents provide a more detailed understandingayior.

of the dynamics: their distribution reflects the breakdown of (iii) The measures we used can also be applied to study
the stochastic (bc')Stab'“ty, by growing noise intensity. Theyhe phenomena of stochastic resonance. In this case the
noise intensityD ™, at which the maximum of the Lyapunov yqpje-well potential is modulated by an external periodic

exponentA (D) is reached, refers to this transition. bias. Therefore, the output signal contains a periodic compo-
CO;:: t?;ir;i(?{?;(ziigﬁglsrsgﬁrﬂ?éa'\gj:ggvo?tgﬁuﬁix?tf ﬂ:;;nent. Since Lyapunov exponent is a measure of linear diver-
be rewr?[ten directli/ in term’s of the mean escape tﬁ)’ne, i?le., i?ence of nearby trajectories_it IS not an appropriate measure
only the motion between the two halves of the potentials i or SR. So the only change n the Lyapunov gxponerjt for a
considered this can be described by this mean escape ti é‘?’t?ble system with penodlc. bias in comparison with the
completely. The different transition probabilities between theOrlglnal syste_m that we found is that the !_yapunov EXPO”e”t
potential wells that are caused by different noise intensitied€creases with the increase of the amplitude of the bias and
are reflected in the shape of the measures of complexity sp&?€ value of noise intensity at which the Lyapunov exponent
cifically: Shannon entropy is increasing, whereas the effeclakes its maximum becomes shifted.
tive measure complexity is decreasing and the fluctuation BY using a full-scale experiment with the Schmitt trigger
complexity shows, similarly to the Lyapunov exponents, acircuit in [5], it was shown that the source Shannon entropy
one-humped behavior. Only thecomplexity is constant for of the output signal processes a minimum being evaluated
all noise intensities since it evaluates the topological equivaversus the noise intensity. This minimum refers to an optimal
lence of all considered symbol sequences. Hence the findingsilue of noise level at which SR occurs. We present here the
for both concepts are in accordance with the well-knownresults of calculations of measures of complexity, e.g., the
ones if that traditional approach is sufficient for the descrip-source entropycalculated with the algorithm of algorithmic
tion. complexity and EMC for numerical simulations of the
(i) For the more complicated model with the fluctuating Schmitt trigger system
barrier the Lyapunov exponent demonstrates the crossover
behavior being a function of the correlation time of barrier
fluctuations. Such a simple dependence of the measures of y=sgnAV-y—Asin(Qt) — &(t)), (34
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0.60¢ ] system exhibits an intermittentlike behavior. As a result, the
source entropy is very small. With the increase of noise in-
0.50 - E tensity the MSF increases, but still more slowly than the

driving frequency of the bias. The randomness of the output
signal increases as well. At the border of the synchronization
region, where the MSF matches the frequency of external
bias, the fluctuations of the escape times are maximal, and as
a result, the structure of the output signal is most complex:
the source entropy takes its maximum, while EMC takes its
minimal value. After the switching events are synchronized

0.40F E

Shannon entropy
<
o]
<
T
]

020F E

10 : ] by the periodic force, the source entropy decreases and takes
0.00f ) . 3 its minimum at the value of noise intensity that corresponds
@ 0.00 0-05noise intensitg»lo 0.15 to the maximum of the signal-to-noise rati&ee[5,29)), i.e.,
to SR. EMC[Fig.13b)] also reflect this behavior: EMC pro-
3.0F ] cesses a minimum at the border of the synchronization re-
B ] gion and a maximum at the optimal noise intensity where SR
il occurs.
i Summarizing, we have shown that the dynamics of sto-
2or chastic bistable systems can be described completely by
SIS Lyapunov exponents and mean escape time only if the sys-
BT tem has a rather simple structure. For more complex and
Lok therefore more interesting systems we emphasize the need to
1 ] analyze distributions of local Lyapunov exponents and to
05k 3 apply techniques of symbolic dynamics as appropriate tools
5 1 for the study of such systems. Measures of complexity allow
0.0L : ' ] us to describe dynamical aspects of the motion between the
) 0-00 008 e imtensisC 015 potential wells and represent, therefore, in comparison with
y

the mean escape time, a more general approach for describ-

FIG. 13. (@) Shannon entropy antb) Cg versus noise inten- INg the coarse-grained trajectories. The concept of measures
sity. The parameters are the same as in Fig. 12. of complexity becomes especially important for experimen-
tal investigations, where we have only one observable, which
often prevents an application of the concept of Lyapunov

where AV refers to the threshold level of the trigger and 8XPONeNts.
&(t) is colored Gaussian noise with a cutoff frequerigiand

an intensityD. We analyze the output of the Schmitt trigger

y(t), which is a dichotomic stochastic process. The depen-

dence of the mean switching frequenéWISF) between We are indebted for valuable discussions to V.S. Anish-
states of the trigger versu® is shown in Fig. 12 and shows chenko, L. Schimansky-Geier, W. Ebeling, A.R. Bulsara, P.
the effect of the MSF locking28]: in a certain region of Jung, R. Mannella, and S. Soskin. A.N. acknowledges warm
noise intensity the MSF is almost constant and equal to thbospitality during his stay at Potsdam University and support
frequency of external bias. The measures of complexity arfom the Max-Planck-Society and from the Russian State
shown in Fig. 13. For a very weak noise intensity the switch-Committee of Science and High Schd@rant No. 95-0-8.3-
ing events between metastable states are rare, so that tG6).
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